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IOCAL STABILITY OF SANDWICH SHELLS OF REVOLUTION */78

E.I.Grigolyuk and P.P.Chulkov
(Novosibirsk)

A mathematical treatment is given of the linearized stability
of sandwich shells of revolution, with asymmetric structure
and a rigid core under compound stress. Stability and mechani-
cal strength formulas are derived for the shear exerted by the
core on the load-carrying faces, for free and clamped ends of
shells of conical, cylindrical, and spherical shape.

Extensive literature is devoted to the stability of sandwich shells; in-
stances of the symmetric structure of shell thickness in shells with a light-
welght core have been been investigated in considerable detail.

The discussion of these studies is a separate task in itself. Below are
presented, on the basis of the equations derived elsewhere (Bibl.1l), the results
of a study of the linearized stability of sandwich shells with asymmetric struc-
ture and a rigid core (shell of revolution, spherical, cylindrical, and conical
shells) under compound stress. Definite results (Bibl.2, 3) are obtained on the
bagis of a specific case.

1. Fundamental Equations

As shown before (Bibl.l), the equationg of the finite buckling of cambered
elastic thin sandwich shells, with an asymmetric structure containing a rigid
transversally isotropic core enclosed between isotropic load-carrying faces may
be written with respect to the force function F and displacement function v. We
reproduce the system of these equations, complemented by terms taking into ac-
count the initial irregularities, on the assumption that the tangential surface
loads have the potential ¥

V2V3F — (1 —v) V2 = Eh [kﬁ ‘(’9_3‘; NN AT (500 )+

dzdy

w  dur, ot [ %w 3w, 0w d*w,
+20x0y dzdy = 9x3 (ay= + E ) T 9y ay’] ’

(1.1)
942 IF 182 a%
D (1 —F V2) vavey — & (5 + S — k) +
8IF % 8%, 9 [ 3w 0w,
+2 dzdy (0x3y + 3:1:8301) ) (aya + a;: —kzn) =dq + (kll + kzz) Y. (1 2)

The equations of the local stability of elastic thin sandwich shells are

% Numbers in the margin indicate pagination in the original foreign text.



V2Vl = [h V,2(1 — k2B-1V2)y (1.3)
D (1 — Oh?B1V?) V2V2y + V,2F —

93 93 a2 -
— (Vi +2 M 5o + Naa 5 ) (1— R3BIVE) 3 = 0 (1.4)
w= (1 — h*g-1V2
( B-1v3)x (1.5)
. O 93 2 .o o
V=gt Vit = b g o g

Henceforth, expressions for the displacement components and specific mo-
ments will be needed to satisfy the boundary conditions.

The absolute shear of the boundary surfaces of the core is

L N PR ks 9
a o5 1+ o A% a=— A 21 W]y

The total moment of normal forces of the load-carrying layers with respect
to the center surface of the core as well as the moment of the core are /79

0%

9 F

Hy=—D ( - + "WJ") Bux + ohts (11— Ta) 3
a2 81 otF

Hyy=—D (-@? 4+ Va—z;) Bix + Yahts (11— T2) 37

Hyg=—D({1—wv) ErEm dix — ahta (11— 73) dzdy

The sum total of the intrinsic moments of the load-carrying layers is ex~
pressed as

a3 a1 Qhl ’F

My =—D (g + vz ) (92— 5= V) 1 ah (1ita — 7ate)
92 a3 }h3 a1F

Afzg =—2D (-5"7“ + v 'a?') ('0-) _— ‘—B—— V2)X -+ l/gh (Tltl _ Tgtg) e
h? QR

01
My =—D(1—%) go (8— T5= V2) 1 — 1ok (rits — 1ata) 55

The adjusted modulus of elasticity E, cylindrical rigidity D, and shear
coefficient 8 will be -determined by means of the rigidity characteristics and .
thicknesses of the load-carrying faces and the core. Let E,, E;, Es be the
moduli of elasticity of the first kind of the load-carrying faces and the core,
respectively; let vy, V5, Vs be the Poisson ratios of the materials of the .
load-carrying faces and the core; and let hy, h», hs be the thicknesses of the
load-carrying faces and the core. Let us then introduce the dimensionless
rigidity characteristics and dimensionless thicknesses of the load-carrying
faces and the core

Ehy 13 Ehy \a hy,
7k=1—vk=(u1—v,=) ' AT (1.6)
f=1
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As implied by eq.(1.6),
vit+v+ty=1{ htttti=1. (1.7)
The adjusted Poisson ratio then becomes
v == yvi -+ yavz + Yavs . (1.8)

The adjusted modulus of elasticity of the first kind will be determined
from the formula

1 — ;2 ° (1.9)
The cylindrical rigidity D and the shear coefficient B have the form of

N 12615 (1 — v3)
D=ma—wml  B=""m—

. (1.10)

Here, G is the shear modulus of the core material, while

0o = 0( + 202 + 03, Oy = (01 4+ 02) / 0o
¢ = (005 — 02%) / 040y, V2 = (02 + 03) / 6o
0 = t32[1 4+ 2(ys + v2) — 3(y1 — v2)?] (1.11)

02 = 3yals(vits + vabz) + Ovivats (s + t2)
03 = 4(vits® + vatz?) — 3(yitr — yota)?

To determine the limits of variation in the coefficients, it is sufficient
to consider the case of a shell of gymmetric structure with a lightweight core.

For y; = Ys = 1/2, Ya =0, t1 = tz = t eq.(1.11) yields /80

01 = 3[32, 92 = 3“3, 03 = 4t2, 00 = 3(1 _— t)z + tz

9= (301 + ta/ )2+ 1] . (1.12)
Hence, considering that 0 < t < 1/2, 0 < t3 < 1, we have
1<0<3, o0<0<s . (1.13)

As can be seen from this last estimate, 9 is sufficiently small, e.g., for
ts = 0.6 and t = 0.2 we have 8§ = 0.02 which value decreases still further with
increasing ts and Ys. The coefficient 8 /8 characterizes the effect of the shear
of the core on the intrinsic moments of the load-carrying faces; this effect
may be disregarded for certain problems of stability and strength.

The boundary conditions for the functions F, ¥ (x; =x%) will be as fol-
lows.




At the freely supported end (N;, = € =w = Hy; =¥;, =ap = 0):
F = VF =y = V= V2V =0, (1.14)

At the clamped end (Ny; = € =w = ow/dx = a, = Hyp = 0):

hl
F=Vir—(1—2vi)y= 2 = 2y _o, (1.15)

At the end with clamped load-carrying faces, in the absence of connections
that would prevent their relative shear (Ny; =€, = 0, w = dw/dx = H;, = 0):

. a 2
F=V’F=x=V2x=E(i—%V’)x:O. (1.16)

At the end free of such connections (N;, = 0, Ny, = 0, Hy; = My, = O;
Q sum = 0)

F:ﬁi.:(,a:
X

D[%Jr(z—v)a%,—}@_%w)x—

— (M & +N“°3L;) (1—-1‘31 vx=0.

vxdy

(1.17)

Note that conditions N;9, N,9, N5 are considered as applied over the dis-
tance e, = 1/2h(Byty + Y1tz - Yotz — Yota) from the center surface of the core.

By introducing the solution function ¥, from the formulas

5 = V2V, F = ERV2(1 — h2p-1V2) 5 (1.18)

the system of equations (1.3), (1l.4) can be reduced to a single stability equa-
tion

D (1 — vh3371V?) VEVEVIVRy, + ERV,2V,? (1 — AR 1V?) g, —

—-(N °3—‘—+2Nu°£;TJ+N o 0% )('1—£~V2) V2V, = 0. (1.19)

1 5 T G 3

The above system . of equations (1.3), (1.4), as well as eq.(1.19), were de-
rived on the assumption that the angles of rotation of the normal and initial
surface of the core may be expressed as partial derivatives of some function.
The boundary conditions examined below correspond to this assumption.

2. Shell of Revolution /81

Consider a local stability loss in a shell of revolution supported on both
sides. Assume that the shell is subject to an external normal pressure g, an
axial compressive force N, and a torque My in the plane of a parallel circle;

b



under the action of these loads, the specific stresses

Ny® = py, Ny® = ps, Ni?=s (2.1)
_ qRa . ro? ) N
pr="3 (1 T sin® + 2l sinta (2.2)
_ 1R Li_) N L — Miorque
& ) (1 + Ity?sin?a 25ty sin? x * §= 2nitg? sinta

will arise in the subcritical momentless state.
Here, rp is the radius of the parallel circle and o is the angle between
the axis and the normal to the initial surface.
Then the problem reduces to the solution of the stability eguation

D (1 — BR*RIV?) VAVAV2V2y, 4 ERV,2V,2 (1 — 1337V 1y
. o1 a1 ha ) (2.3)
+(p1—5}7—‘) d:r()J—*—p2 OJ)(i—Tvz)Vzsz:O

= 4) of free support

with the boundary conditions (for x = 0 and x
(2.4)

= Viyy = V2Viy = V2V2V2y = V2V2V2V2y =0 .

We seek the solution of eq.(2.3) in the form

Xt = sin (mnzx [ I) {asin [n(y — mz) [ Ro] + b cos [n(y — nz) [ R2]} . (2.5)

Here, m is the number of half-waves along the generatrix of the shell; n
is the number of waves along the perimeter; T i1s the parameter characterizing
the inclination of helical loops due to the action of the torque; and a, b are

constants.
Introducing eq.(2.5) into eqg.(2.3), we obtain

afp(n, —m) — p(n,m)] cos (maz /1) cos [n(y —nz) | Ry] +
+ alp{n, —m) + P(n, m) ] sin (maz /1) sin [n(y — nz) [ R] +
+ b[v(rn, m) —(n, —m)] sin (maz/l) cos [n(y —nz) [ R] + (2.6)
+ 5[ (n,m) + 9 (r, —m)] cos (maz /1) sin [n(y —nz) | Re] = 0,

where
. — 1 4 O3 [(— m]’R - mal/n? -+ (n/l{g)’] mt 173
w (r, m) Dy g L[(— nn/dta = majn)t - (n) ] “ 11=+ )_*_(7,;_) ] +
4 BR [ n/Ra + ma/I) + (Rs/ Ry) (n/ Ra)?]?
R T [(= a0 Re & w4 (nj R

(= R T 2R () e o

(2.7)
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The equality (2.6) is possible only on condition that
P(r,m) =0, Y(n, —m) =0. (2.8)

Thus, we have two equations for finding the critical combination of stresses
Pi1s» Pz, S. We will now consider particular problems.

3. Cylindrical Shell /82

a) Uniform Axial Compression p,

Assuming that Ry, = ®, R =R, T =p, = s = 0, we obtain from eq.(2.7) the
formula for the critical compressive axial unit stress

14+ 0r23-1m, Eh

= D 1 4 h%37Im,y M2 R*my (3.1)
__ mn? n3 B tmin? n? \2
mo=T e M= (T ) (3.2)

with (mm/2)° <my <o, m <mp <., According to eq.(3.1), p, reaches its
minimum at the boundary of variation in the variables m;, m,, determined by the
equation m; = m,, since the function (1 + vi°87'm;)/(1 + K°8 'm,) is monotonic.

We seek the minimum of p, on differentiating the expression

S L o (3.3)

P =D g, ™t Ry

with respect to my. This leads to the equation

2(ht Hht Eh h?
Dmy? (14 Tgmm + gom? ) — S (14 2w =0 (3.4)

This equation contains one sign reversal and thus has one positive root
realizing the minimum of eq.(3.3). Considering that § is a negligible quantity,
we determine m; by solving the quadratic equation

__ERS \ . 2ER Eh
(1 DH’,’S“)m‘ ~R®Dpg ™ —ppr =0 (3.5)

whose positive root will be

my = M(i_w_(_1.:‘i’i
RE VB, R3V 6, ’ (3.6)
while its corresponding least critical unit stress will be
__ERVe, L2130,
L Y TP S VT TN T ¢ ) (3.7)
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The limit of applicability of egs.(3.6), (3.7) is determined by the in-
equality )

2R Y3 (1 —v) 5

Hence, beyond the limits of this inequality, given the minimization of ex-
pression (3.3), allowance must be made for 9; however, in accordance with
eq.(3.6) the parameter my is extremely large in this case and h/R8 > 1. Hence,
eq.(3.3) may be rewritten as

p1 = DBA2(1 + vh*3~'m,) + Eh(R?my)-t . (3.9)
The condition dp,/dm; = O yields

_2Y 3 (=
YT T hnyee ! (3.10)

so that the critical unit stress will become

ER V5,0 +Gh9ﬂ

R N Yo o (3.11)

b) External Transverse Pressure g

In eq.(2.7), we put

Rt=°°1 Rz=R. "]=Pl=s=0, pz:qR’ m=1
A==1/R, k=Hut/BR, b= 12(1— v} )RE/ah?0, -

We have (Figs.l, 2; these and the following diagrams give the minimal /83
values of the critical load)

12— v At - kD (w4 AB?) mE A n? \2 pine
Py="EReat T Rk (nE AR A (F ?F) + W - ApZp (3.12)

In eq.(2.7), we put

Ri==°°, R2=R, pl=’/2qR1 P2=9R, 3——"01 m=11 A'=l/11)
k = h®n? / BR?, u2 = 12(1 — v2) % / n2h?6,.

We have (Figs.3, 4)

gt = 1BA= VDGR AL kO (/M 40?0 (1N 4 nt) s 4
J e S Y CW N ER I =) S VR E sy (3.13)
pa R
T A aht £ T (T

7



X
/ %\ \{2{7\- A’\'” w2 25000,0 08 o 025;
‘ 4 ﬁ\ //f:qmm
2 x-ﬂ)?;%_‘\«ﬁ_ﬁ\ 77
p o t—— —
? 4 & eAw 7 A
Fig.1l
(‘
. Js
% J2
/4
ZI\ \
w 74
71\ 20
&\ \\ 30000 y A= =001
(0090 | =16, P/ ' N
¢ — 020
\\%'\.\ 12 >\
P i e \\ 150 \>
AWK = 49 JP“\\@L
7 ] ——t— /3 i
¢ 02 a<¢ 46 4 / q¢ ——
¢ 4z 0¢ 06 04 K
Fig.3 Fig.l

d) Torsion

From eq.(2.7), at

Ri= o0, Ry=2R, py=ps =0, k = h*n?[1*B, e = Rh[B,
A=1l/R n=ne" = (all/In)e'h, t =h /R, 0=100/ (1 —+?

we derive two equations for determining s

$=Th

O CUI L T 24K S VL 3 (—mfEp
—mtE 7 (e (—mEP 1)

EW_ [ 50 A4 Oke g2 [/ (=i - £ 1]
128%  f 4 ke™g2 [ (—my LB+ 1)

}

(3.14)
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For shells with a small parameter ¢, eq.(3.14) is simplified, since then
it may be assumed that

e ()1 ~1 . (3.15)
Then, we find
Eh? , 720 1L k(e | E2 s
=g —_—d 22—
§ = 2R € [125.2 (—m+E) 1_*_,‘(&,5-/,)_1 + n3 ( 7h+§) ]
ER , 7%0 {4 Ok (E%/)1 | g2 s
=20 g S (= —
$=3r°® [1251(—11‘—;,) ttheeiy ar (—m—3) _.l
Adding and subtracting these equations, we have
D 2
$s = 2_’?-,—’:.;. e'/i' S = —271;:% Blldnlgz (nln + Ez) (3.16)
e BL_ w0 44 Ok 0. (3.17)

2
i — 3 §m® — 3 36" 1 4k (Eza'/n)—l
Equation (3.17) makes it possible to find Ty from a given n (Figs.5 - 6).
N
AN

¢ N\

y \\X df;

I — NI
0007
=15 w000 v+ 0
J7 &
adyr
JJS —_—l
a Z ' V2 4 A
Fig.5
J ¢
pait
26
80 x=a/, 000
10 S e -
3
7 —ee
a7 | o005 1‘ 2007 T 7557
22 -~
¢ 2 < 5 4

Fig.6



e) lccentric Compression

The pressure over the perimeter of the shell face, subjected to the action

of the eccentric axial force N, is found from the formula

; N
P1=Po (1-{-23005%)}, Po =g > 3=_;_,

where e is the eccentricity of the force.

Introducing

=]
%1 = sin mm-}-Z aeinv/R
/4

-— 00

into eqg.(2.3), we have

ans1e — (Pad — 1)an - @nge =0 (A= pot) ¢

Here,
p LEVERT ontn? (Bt n3 | RY) (mind [ n? ) RS
Yo =0 AT B at) 1) minj

Eh mind /13
+ R? (ma? [ B3+ nd adpy :

The equality (3.20) can be written as

an_ -2

a,, AMp,—1i—ea, /a, for n >0
an ']
an+1 - Ar’pn —_— 1 — ean_l / an: fof' n <0 .

Since ¥, = O(n*) when n ~ = =, the series (3.19) converges.
that ¥, = ¥.,, we have

Therefore,

a_ a
}i\p0=1+8(%+ a:):i-*—ze-a—ol- .
However, a,/a, < 1 so that
Po = Yo/ (14 2¢) -
For sufficiently large n
_l‘_~..8—
4,y ~Mpn—1

10

(3.18)

(3.19)

/85
(3.20)

(3.21)

(3.22)

Considering

(3.23)

(3021—)

(3.25)

.



Returning to ay, we have an infinite continued fraction

a e
Qg X

(\Dﬂ\-—i)—-m (3-26)

Now, on the basis of eq.(3.22), we obtain the infinite continued fraction

Mp—1 { e? €? el }
= ’

2 == =D —"* =D —=""" (3.27)

which makes it possible to determine both A for a given € and € for a given A.

Numerical calculations show that when determining € for a given XA in fractions

of ¥o, Po it is sufficient to confine the consideration to three or four terms

of the fraction (3.27). Consideration of the first four terms leads to a quad-
ratic equation with respect to ¢ and hence presents no computational difficul-
ties. Calculations performed over a sufficiently broad range of parameters

show that p, can be determined with high accuracy and always with a margin, by
means of the formula

po= o/ (1 4 2e) - (3.28)

The same finding was originally obtained by Fluegge in examining an analogous
problem for homogeneous eccentrically compressed cylindrical shells.

f) Effect of Compound Stresses /86

The critical stresses in the presence of compound axial stress, bending
stress, and transverse pressure satisfy the condition

;12_24_71::—.*_(%:)’:1 , (3.29)

where qog*, Do s s are, respectively, the parameters of the critical uniform
transverse (or omnilateral) pressure, uniform axial pregsure, and tangential
boundary stress, with each stress acting separately; qx, py, Sy are the re-
spective critical values of these parameters when the stresses are combined.

g) Oscillations and Stability of a Shell Clamped on Both Sides

On approximating buckling by the function

waW[cos Lﬂiﬁlﬁ—cosw]cos —"l—;’—cosmt , (3.30)

we obtain the expression for ¥X; in the form of

11



wns { cos [(m — 1) nz/i]

K= 5 T & ((m — DYAS 4 1350 [(m — 1903  n¥fd§
cos [(m + 1) mz/l] ny (3.31)
T T R (m o DA + n¥fa)] [(m A 1)’/x=1‘n=/n=1'} c0s J- cos ot .

Substituting this function in eq.(2.3), complemented on its left-hand side
by the inertia term

3 31 ~ .
(23 oula) g VPVF (1 — 1BV 1, (3.32)

k=i

(where p, is the specific density of the material of the faces), and performing
orthogonalization with respect to w, we have

. . — 1) 1
Pt [0 8m) E T P b (2 B 0 (24 By) =

1+ﬂk[(yrl—1z/l’+lt’/n2] (m—i)

TR e [ ] ()
L4 k[(m 4 123+ a2/ x2] [ (m 4 1)2 n?

+ 1+k[(m+1)2/}.=+n=/u=f”[ A +?:7]+
p? (m—1p (45, u? (m + 1)%

+ e [(m—i)’/?“-{—n’/ﬂ’]‘ A [(m + 1)2/.12_*_"2/,@]‘:'

(3.33)

H

where . - it 3
. X
P1 =P15;f. Pz == Pa D3 m.2=_[ﬁ?’rv Q= Epkhk,
k=1
_ i3 1 s 12 (1——'\)2) R’ __ [0 m=zk1
k= 'B'Rz ’ A= e B = nahzoo ’ 61m = {1 m=1 "

For the case of a cylindrical shell with a structure symmetric over its
thickness, see elsewhere (Bibl.2).

e Spherical Shell Subject to External Normal Pressure g

Assuming in eg.(2.7) that Ry =Ry =R, s =0, py = p, = 1/2 qR, we have

gR . B--Du Eh
—2—‘ =D m— k '{' l—fzk (lPol)

Investigation of the minimum on the basis of eg.(4.l) was performed by
studying the stability of a cylindrical shell for the case of axial compression.

We have

2R V0, 200, 28 Y 3(1—v)
1= V;a;('r_:o;r) —menmi—w * '~ mys < Ve - (L.2)
Here, A 1is determined by the formula /87
_2V30—v) I (Le3)

R0, 1—@hV3IA—v)(r3V )

12



while, in the other cases,

2ER YV 0,0 op B Bt 1 2V3(—v)

1= 1V 35d=—v) +26 R "o, b= v 0o, ith (L)

For the case of a spherical shell with a structure symmetric over its
thickness and with a lightweight core, see elsewhere (Bibl.3).

5. Circular Conical Shell Fxposed to Uniform Axial Compression
and Uniform External Normal Pressure

let ro, r; be the distances along the cone generatrix to the upper and
lower bases, respectively; let o be the half-angle of aperture of the cone;

y}’__—
17
JJ[———
5 g,
\ 3
14 \\\ 24}
/
\ TN @250 u-01,6%0
s \ a=l5P=0/, 845 %6 — X\Eg-zmﬁ
7 \\ 7 \\\\ 10900
5 er N S .
s == 100~
\ \
J \ ; é \-E‘L: i
Jb
A I A
22 0€ 025 &84 / g 22 04 g as 7/
Fig.7 Fig.8

L =r; - rp is the length of the shell along the generatrix; r is the coordinate
measured from the vertex of the cone; © is the polar angle; q is the external
normal pressure; N is the axial stress applied to the lower base; R is the
radius of the lower base. The other notations are the same as above.

Iet r = 1 exp (7Cx), where (Bibl.L) { = 7w 4n (rp/ry); therefore, O <
<x<€1land =< < 0.

w == w,(x) cos ny, % = %i1(z) cos ng, F = F((z) cosngp . (5-1)

Using the Bubnov-Galerkin method, we obtain

1

_—— d
S [vn’vn’p. — Eh cot a (nfr))~2 73> ( 7 — g ?{) w,] 6F 2™ dr =0 (5.2)
0

13



1

Qh3 d2 d
§ {09,292 (1= S5 0,5) sk ot gyt (e — g ) Pt

1

+ 1/aqry tana (Lrur) =2 e "% ( ;I; 4+ ng de— ——%:—:‘:—‘iz—) wy (5.4)
-+ N ()20 (7(1;—, —=ag Jd;) u’l} Sunc?  de =0
where /88
V, = (fran) =3¢ ( f:a —2—.%)

For a shell freely supported on both sides, the condition
w, = [1— (A2 [ B) V 231 = 0
will be the only kinematic boundary condition (at x = 0, x = 1).

In investigations on local stability loss, neglecting the static boundary
conditions for moderately short shells introduces no great error; hence we
prescribe the functions wy, X1, F, in the form (m being the number of half-
waves along the cone element

Lnx

wy = weed"* sin mnz, X1 = %o sin mxx, Fi=F "™ sinmnz . (5.5)

Using egse(5.2) - (5.4), we have

gR2__ ., 2 1 — e oM — 1252 —m3  NRE, 4 41— .50 4 m
Datcosa M T [  12mtiim: TDm M B AR Sn0
a4 41— (i 160y) (W 4-9%) |7
_{[1+kk3—3— 1_88"C m,_*:gga } X
(M — £3) (M — 082) + 1623 (M — 322) — 12m3L3
X md - 472 +
. s (5.6)
+ 20438 1 —e¥™ (A — 353 (M — [3)} + 4L¥m? (M —303) +
{ — et m34- 3
2(1—ef%) mi 4 033
304 cos? 2 —_— e
+p S E 3 (1 — &%) (M — 160%) (B — 4T3 -+ 365% (3 — 8% — 32m?]
where
_A2m (1 —v?) Lin h2s 23
= TR =hinia e k=g M=mi4—

Change-over to a cylindrical shell begins at @ — O; then, £ - 0, A » =1/R.
For a cone closed at the vertex €2 = (° - 0, eq.(5.6) assumes the form
(Figs.7, 8)



_ q I3 B A‘S.Bﬁcnsa G4 k -1
0= Tar = G- 6oy 7 {1+ 77 i 9| x (5.7)
Je
8k ¢ 2413\ 3cos?
. 2__ ouvrt _ _ weALICOSs 0
X[Mn+6m 39) + 77 (na? 3)MF—JV]+RJ;1&§:3ﬂ+’

where \
Az___nz_ n
U= sin?a * M =Yg
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